

Technical Information

Anderson Rhododendron Medium With Calcium Chloride, Vitamins, Sucrose, Adenine sulphate And Agar

Product Code: PT1019

Application: Anderson Rhododendron Medium contains nutrients as described by Anderson in 1984. It is a low inorganic nutrient composition and is used for the conventional micropropagation of *Rhododendron* and other plants of family *Ericaceae*.

The formulation is a nutrient blend of macroelements, microelements, vitamins, carbohydrate, plant growth regulator and gelling agent. Potassium nitrate and ammonium nirate serve as sources of nitrate and stimulates morphogenesis. Magnesium and sulphur act as precursor in many vital metabolic processes while sodium dihydrogen phosphate provides phosphate. Microelements like Boron, Manganese, Molybdenum, Copper, Iron and Zinc enhance metabolism in the plants. Boron play a key role in the carbohydrate metabolism. Thiamine, pyridoxine, nicotinic acid act as enzymatic cofactors in universal pathways including glycolysis and TCA cycle along with primary and secondary metabolism in the plants. Adenine sulphate stimulates axillary bud growth and promotes shooting.

The product is plant tissue culture tested but it is the sole responsibility of the user to ensure the suitability of the medium for individual species.

ngredients	mg/Litre
MACROELEMENTS	G ,
Ammonium nitrate	400.000
Calcium chloride	332.200
Magnesium sulphate	180.690
Potassium nitrate	480.000
Sodium phosphate monobasic	330.390
MICROELEMENTS	
Boric acid	6.200
Cobalt chloride hexahydrate	0.025
Copper sulphate pentahydrate	0.025
EDTA disodium salt dihydrate	74.500
Ferrous sulphate heptahydrate	55.700
Manganese sulphate monohydrate	16.900
Molybdic acid (sodium salt)	0.213
Potassium lodide	0.300
Zinc sulphate heptahydrate	8.600
VITAMINS	
myo-Inositol	100.00
Thiamine hydrochloride	0.400
CARBOHYDRATE	
Sucrose	30000.000
GELLING AGENT	
Agar	8000.000
OTHERS	
Adenine sulphate	80.000
Total(gms/litre)	40.1

Product Specification

cdhfinechemical.com

Material required but not provided

- Autoclaved distilled water
- 1N NaOH/HCl
- Plant growth regulators

Quality Control

Appearance

White to off-white, homogenous, free flowing powder

Solubility

40.1 gms/litre soluble after boiling in distilled water

Colour and Clarity

Colourless to light yellow solution, hazy gel is formed on cooling

Gelling

Firm gel formed at pH: 5.75 ± 0.5

pH at 25ºC

4.00 - 5.00

Plant Tissue Culture Test

The growth promoting properties of medium is assessed by providing plant cultures with relative humidity of about 60%±2%, temperature 22°C±2°C and photoperiod of about 16:8. The plant species showed actively growing callus and shoots with no structural, necrotic and toxic deformity.

Precautions

- Ensure appropriate pH of the medium before addition of gelling agent as acidic pH will lead to decreased gelation resulting in semi solid flowing gel while alkaline pH will lead to formation of hardened gel.
- Use of Distilled water/Tissue culture grade water is recommended for media preparation as tap water or lower grade water may lead to salt precipitation and improper gelation.
- Avoid preparation of concentrated solutions, as it will lead to precipitation of salts.

Directions

- Reconstitute medium by adding required quantity of powder in two-third of total volume with constant, gentle stirring till the medium gets completely dissolved.
- Add heat stable supplements prior to autoclaving.
- Make up the final volume with distilled water.
- Adjust the pH of the medium to 5.75 ± 0.5 using 1N NaOH/HCl.
- Add gelling agent and heat the medium to boiling till complete dissolution of gelling agent.
- Sterilize the medium by autoclaving at 15 lbs and 121°Cfor 15 min.
- Cool the autoclaved medium to about 45°C before adding heat labile supplements.
- Aseptically dispense the desired amount of medium under a laminar airflow unit in sterile culture vessels

Storage and Shelf Life

- The plant tissue culture medium powder is extremely hygroscopic and must be stored at 2-8°C in air tight containers.
- Preferably, entire content of each package should be used immediately after opening.
- Use before the expiry date.

Disclaimer

- User must ensure suitability of the product(s) in their application prior to use.
- The product conforms solely to the technical information provided in this booklet and to the best of knowledge research and development work carried at **CDH** is true and accurate.
- **Central Drug House Pvt. Ltd.** reserves the right to make changes to specifications and information related to the products at any time.
- Products are not intended for human or animal diagnostic or therapeutic use but for laboratory, research or further manufacturing of diagnostic reagents extra.
- Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.
- Do not use the products if it fails to meet specifications for identity and performance parameters.